Category: Areas of Study

Dealing With Bird Strikes

A bird strike can ruin a bird’s day as well as your own.

Vern Weiss

At about 3:30 on a chilly 20-degree New York afternoon, USAirways A320 took off from LaGuardia’s runway 4 with its first officer at the controls. Few are not familiar with the “Miracle on the Hudson,” after hearing the somber reports of a powerless airplane with 155 passengers and nowhere to go but the Hudson river. Passing through 2,800 feet the Airbus collided with a flock of birds and the first officer relinquished control of the airplane over to the captain who performed a flawless ditching with no loss of life. The birds were Canadian geese.

Captain Sullenberger landing US Airways Flight 1549 in the Hudson River

History of Bird Strikes

Bird strikes on aircraft are nothing new. The first recorded bird strike occurred to none other than Orville Wright in 1905. The first fatality from a bird strike didn’t happen until 7 years later when pilot Cal Rogers hit a bird in his open cockpit “Vin Fiz” causing it to lose its engine and crash into a river. Pilot Rogers wasn’t killed from the impact. Instead, he drowned when he could not free himself from the inverted aircraft lying on top of him in the water.

Dangerous bird strikes have occurred throughout aviation’s history: 1960 Eastern Airlines, a flock of starlings resulting in 62 deaths. 1964, Astronaut Tom Freeman killed in a fighter jet when a bird struck his canopy. 1995, a Falcon 10 bizjet hits a bird and crashes killing 10 on board. In 2004 a KLM 737 struck a goose on take off and proceeded normally but the surprise came on landing when its damaged nose gear didn’t work. Fortunately no injuries in that one.

Bird Strike Regulations and Testing

FAA Parts 23 and 25 no longer mandates bird impact speeds as was once required of aircraft. However, certification of jets now must withstand a 4-pound collision on the windshield and an 8-pound collision to the tail and empennage. Curiously there are no bird strike certification requirements for light aircraft and light helicopters although, ironically, these are most likely to operate at altitudes commonly shared with flocks of birds. Let’s do some math. At 200 knots a collision with a 30-pound bird results in an impact force of 30 tons! At 250 knots only a 4-pound bird will make an impact force of 15 tons! Aircraft certification testing was once done by firing chickens from a cannon into a windshield however now it is done with gelatin blocks or computer modeling.

Bird Strike Details

One might think that a multi-ton aircraft striking a dinky little bird would result in a bird’s simple deflection off the nose as it careens to eternity. I have experienced one serious bird strike and that occurred over Philadelphia at 21,000 feet at 11 o’clock at night. We hit a goose and thought we’d struck another airplane. Our 100,000-pound0 pound aircraft shuddered and the flight attendants called up to us, “What was that? Are we OK?” Fortunately, there was no engine ingestion because, when there is, the imbalance caused by disintegrating turbine blades often literally rips the engine apart. But it destroyed the nose of the aircraft and all of the radar and avionics that sat inside it., probably $200,000 worth of damage.

The most dangerous bird strikes are those with geese because geese are larger/heavier, faster (closure speed higher) and they frequently migrate at night when pilots aren’t suspecting them. (See previous paragraph!).

Although it is true that light planes are moving slower so impact speeds are reduced, the damage can still be catastrophic. The plastic windshield thickness of a light plane is only between 1/8 to 1/4-inch. On a business jet or transport category jet the windows are laminated with layers for resiliency and optical correction and are between 1 to 3 inches thick.

The greatest threat of bird strikes (notwithstanding USAirways on the Hudson) is between March and April and then again between August to November. Birds tend to follow the same migratory routes that can be seen on various Internet websites1. The other interesting thing about bird migrations is that they tend to follow pressure patterns to take advantage of the best ground speed. As you know, in this hemisphere, air flows counter-clockwise around a low pressure system. If you take a look at the Prog charts and follow the isobar lines around the highs and lows you can roughly visualize where birds may utilize the winds aloft.

Most bird strikes occur on take off and landing with the greatest majority occurring below 3,000 feet and, of that, the heaviest concentration is within 1,000 feet of the ground.

“So What Can I Do About ‘Em?”

There are a number of things a pilot can to do minimize a bird encounter. For one thing, pay attention to bird warnings on the ATIS or when given out by ATC. Similarly, be a “good neighbor” and provide controllers with reports when you observe bird activity at an airport or at a particular altitude. Treat a flock as you would a thunderstorm and give ’em a wide berth. When taking off use a noise abatement climb (hustle to altitude, in other words), avoid 3,000 or below and fly slower. Use windshield heat to keep the window as resilient as possible and turn your lights and strobes on. In more advanced aircraft, turn on auto-ignition.

Airports that are troubled with birds often are equipped with various tools to discourage them. Chemical repellents, tactile spikes placed in roosting areas, loud bio-acoustic or pyrotechnic cannons and even effigies like predator “scarecrows” are used. Keep in mind that when you’re taking off, birds tend to dive when their birdie-TCAS goes off and tells them something is approaching them (like your airplane). When birds are on the ground they tend to flush to about 50 feet and then settle back down. Ground birds can be dealt with by requesting a sweep by an airport vehicle or cannon sounding.

There’s a couple additional things you can do that might seem a little hokey but if it helps, why not? When you are in an area of bird activity put on your sunglasses. If one comes through a windshield you may have shards of glass going everywhere and some eye protection might help. The other thing that has been argued about for years is the use of radar on take off. Some commercial pilots will tell you that the birds “hear” the radar and that scares them which is nonsense. However some years ago the Audubon Society conducted some experiments and found that they believed birds can “feel” the warmth of the radio signal coming from your radar antenna. This “hot spot” may be uncomfortable and the birds depart the area. If the radar thing works, you’re ahead. If it’s doesn’t, what have you lost?

Reporting a Bird Strike

Finally, whenever you have a bird strike be sure to fill out an FAA Form 5200-7 (BIRD/OTHER WILDLIFE STRIKE REPORT). Both NASA and the FAA monitor and track these things which enable strategic planning that provides additional equipment where needed to assist pilots in in bird prone areas.

Get started with your flight training today!

If you would like more information, you can:

  • Call us at 801-596-7722

References:

1 – Birds tend to follow the same 4 routes during migratory seasons. Such routes are depicted at http://www.birdnature.com/flyways.html

Featured Image: Tetsushi Kimura

Understanding and Practicing Basic Flight Maneuvers

It’s important to understand the purpose behind teach and learning certain basic flight maneuvers.

Jennifer Roth

With technology continually changing in the aviation world, flying airplanes has become more automated. With glass panel navigation to autopilot controls, the pilot can at times seem ALMOST not necessary. However, we all know that is not true and technology is well known for malfunctioning, especially at the worst times. With all that said, many of the basic flight maneuvers that are taught in flight school may seem very outdated to pilots. It is important to not only know how to do the maneuvers but why they are still being taught to student pilots.

Any flight student, current or past, will tell you there was never a shortage of training maneuvers. From basically day 1, students begin learning stalls, slow flight, steep turns and of course emergency procedures. Each of these has their own set of skills that safely teaches a new pilot how to handle the airplane in specific configurations. It creates a useful training environment to teach the student how the aircraft handles, what to watch for and how to adjust accordingly depending on what is happening or required.

Basic Flight Maneuvers – Stalls

One of the first maneuvers introduced are stalls. Many times, people do not have a clear understanding of what a stall is. Anyone uneducated in aviation tends to say or think it is an engine stall. In reality, is the loss of lift. Stalls can occur at high airspeeds as well as low. Stalls are taught utilizing flaps up, flaps down, throttle out as well as full throttle. The student will set the stall up in the specific configuration and if they are working for their Private pilot certificate, they have to bring the aircraft to a full stall. The purpose of this training maneuver is to teach a student to recognize a stall before it occurs as well as being able to safely recover with minimal loss of altitude and heading change. When a pilot goes on to the airlines, the airplanes will be bigger and faster, but they can still stall, and it becomes way more dramatic, dangerous and scary for passengers. So, pilots are taught how to deal with stalls and prevent them early on. Stalls are practiced at higher altitudes so a student can make mistakes in order to learn, but it’s important that they understand a stall can occur at any altitude, especially takeoff and landing when they are low to the ground. When they are low to the ground, they do not have the luxury of altitude for recovery and many low-level stalls have taken the lives of many pilots on takeoffs and landings.

Basic Flight Maneuvers – Slow Flight

Another flight maneuver that is introduced is slow flight. The purpose of this maneuver is to put the aircraft in a nose high, slow speed, unstable situation. There are two configurations required, with full flaps and with takeoff flap setting (depending on the aircraft). The student will set the aircraft up to the airspeed and pitch just below the stalling point. The stall warning horn will be going off. They are then required to make two 90-degree turns, one to the left and one to the right. Depending on where in their training they are at, private or commercial, they have specific standards to maintain such as how much bank angle they can exceed or how much altitude they can gain or lose. If the turn is too steep and become uncoordinated, the plane can easily go into a stall and if too uncoordinated could become a spin. A student may think this situation won’t happen on a “normal day, normal flight” but this situation can happen very easily especially coming in for a landing. They begin to sink too quickly and the student will then pull back causing a nose high, low air speed and because landing is a busy stressful time, they may not even realize what is happening. And as previously discussed, stalls at a low altitude are many times, not successfully recovered.

Basic Flight Maneuvers – Steep Turns

Steep turns tend to be considered a more “fun” maneuver. They are steep turns, usually 45 to 50-degrees of bank while at normal cruising speed such as 100 knots in a Cessna-152. The point of this maneuver is to teach the student to do 2 360-degree turns in both directions while maintaining their airspeed and altitude and rolling out on their starting heading after each turn. The purpose of this maneuver is for a pilot to know how to do a high-speed steep turn safely without placing themselves in an unusual and unsafe attitude. As discussed previously, it is easy for a pilot to become overwhelmed, like on landing and be asked to make a sharp left or right turn, and then they panic or get behind the aircraft and then they can lose their bearings, pitch the nose up and place themselves into a high-speed stall, or even a spin. Making student pilots practice steep turns teaches them to have a proper scan of all the instruments as well as the horizon and to pay attention to all cues they are being given.

Basic Flight Maneuvers – Emergency Procedures

The training and practice of emergency procedures is a given with any situation that can result in a crash and possible death. In aviation the procedure that is practiced almost every single flight is engine-out procedures. A flight instructor will pull the throttle to idle when the student is not expecting it, on takeoff, landing, practicing maneuvers or just basic flying. The student has to immediately set the aircraft up for landing. They follow their emergency checklist and begin setting up for full shut down and landing wherever the best field, or location is. They have to remember where the winds are coming from, take account of power lines, fences, homes etc and never stray too far away from the location they choose. Depending on what altitude they are at, it will affect how much time they have and how much altitude they have as a buffer. Unless over an airport, instructors will usually decide if the student would have made their field and tell them to go-around. The unplanned procedure allows for the student to learn to adapt and operate under pressure, as much pressure as a fake emergency can allow.

Just like with anything else, practice makes perfect, and continually practicing emergency procedures allows a student to rely on that in an actual emergency. They will tend to revert back to training, and it becomes almost automatic for them. Instructors will also ask students to recite what they would do in other situations such as loss of communications with air traffic control, or an engine fire, or bird strike. Anything that can occur, flight instructors try to teach students to prepare for. Of course, the reality is that no matter the preparation, you can never be prepared for everything. However, until that point, continual training and practice will lay a foundation for a student to rely on as much as possible.

In Conclusion

Even with today’s technology and ever-expanding intelligence of airplanes, pilots are still the ultimate authority and decision maker in the aircraft. If all resources failed, it then falls on the pilot. So even though autopilot is wonderful, it may not be there one day so it is important that a pilot never stop learning, practicing and keeping a lookout for danger when flying. Too many times complacency gets the best of people and that’s when mistakes are made. Pilots should always revert back to their training, and remember why they were taught what they were taught, such as basic flight maneuvers, even if in the moment it seemed tedious and monotonous.

Get Started With Your Flight Training Today

You can get started today by filling out our online application. If you would like more information, you can call us at (844) 435-9338, or click here to start a live chat with us.

Using the PAVE Checklist As a Pilot

Using the PAVE checklist is necessary when flying off pavement in Montana’s last, best airspace.

Richard G. Wissenbach

It’s hard to beat flying from Montana’s Bitterroot Valley. It seems only logical that a state known as the “Last Best Place” would also have some pretty incredible flying. It doesn’t hurt that it borders Idaho, “A Pilot’s Paradise.” I would expect every pilot has a place near and dear to their heart, and the opportunities that abound in the Treasure State have a firm grip on mine.

A fellow pilot and I jokingly speak of the “Home School Course.” It consists of three airstrips, each with varying degrees of difficulty. We feel that if you can become comfortable going in and out of these technical strips, you can land anywhere. Each has its peculiarities and challenges and there isn’t a whole lot of room for error.

Montana's Bitterroot valley - - Using the PAVE Checklist as a Pilot

Life in the early 1990’s was simply wonderful. My wife and I were married in the fall of 1989 and had a newborn the following year. She was totally supportive of my desire to become a Commercial Pilot and our first loan was for $4,500.00 to finish out the payment of a 1966 Cessna 150G. A great year to be manufactured, I might add! While $6000.00 doesn’t seem like much these days, to an A&P making six bucks an hour, it was plenty.

While I’m definitely not as young as I once was, I also like to think I’m not as dumb as I once was. As youth, it seems like we’re invisible and in retrospect, we realize it is nearly miraculous that we get through some things unscathed. It’s a very thin line that often separates us from our follies and near disaster to experiences that shape our future.

Three hundred feet or so from our fifty by ten-foot trailer mansion was a small field, and it wasn’t long before the ditches crisscrossing it were filled in with the help of a shovel and wheel barrow. Piney Field was activated early one spring day 26 years ago. While 900 feet may seem short, it had a good slope to launch from and it just wasn’t a problem to clear the power lines at the bottom, 1700 feet away. I was now a bush pilot and had it all figured out.

While I didn’t get a whole lot of flight time each day that I flew to work, the one way out and no-go-around landing option was great experience for the logbook. I was now a living breathing bush legend, at least in my own mind. Asphalt lovers were pavement pilots and there was green grass growing under my tires.

Learning To Use the PAVE Checklist

For good reason, there is an emphasis on incorporating the PAVE checklist into preflight planning. Risk is mitigated when we perceive hazards. Trust me when I say it absolutely must be an integral part of our decision-making process. As Father’s Day has recently passed, I shudder to think of what the outcome could have been when I didn’t comply with the all important External Pressures located at the end of the acronym. Faith, Family, and Flying would have been nonexistent if I would have flunked out, which for all intents and purposes I should have. It may be located last, but it’s certainly not the least.

My sweet wife was very patient with my flying. I think part of it may have been that fact that she was a stay-at-home mom and we only had one vehicle. It was difficult hauling the laundry with the wheelbarrow and shopping on foot was out of the question, especially with town 10 miles away.

To put it mildly, she was not overly enthused one morning when I informed her she wouldn’t have the car that day as it was raining and I would have to drive. My spouse was all of a sudden a wonder weather woman, as she looked out and let me know that I had flown in way worse conditions than that. She didn’t seem to be able to comprehend the excessive tailwind on takeoff concept either. Patience is a growing process and at that point in the game, it was merely a seed that had scarcely thought of germinating. I overreacted in a huff and rushed out the door. I hated being late and while this argument wasn’t the hill I wanted to die on, it very nearly turned out to be just that.

Airstrip in Montana's Bitterroot valley - Using the PAVE Checklist as a Pilot

I untied my trusty bird, pushed down on the tail and spun it around pointed toward the east, ready for takeoff. The 100 horses were off and running and with a quick magneto check so was the pilot. It didn’t take but a couple hundred feet or so for me to realize that getting airborne was never going to happen. I’m not a swearing man, but there’s no doubt a few choice words entered my mind. I quickly got on the brakes and that’s when the real acceleration happened. The airplane started sliding downhill and it was totally out of control. I was simply along for the ride. It pointed northerly, it pointed to the south, and it nearly swapped ends, all the while headed down the sloped airstrip. I believe is was at that moment where I prayed really hard, probably contributing to the aircraft miraculously coming to a halt, just before crashing off the bottom of the field. I was far below what I ever kept mowed or free of rocks. How I missed the fences as well, I’ll never know.

It took a while for me to stop shaking and a real effort to taxi back up the strip. In fact, there was enough time for it to sink in my head that I could never again give in to external pressures in that manner. You see, there were actually two items in the PAVE checklist that were violated. Two strikes, not a good position to be in. The Environmental Conditions alone should have been such that the takeoff should never have been attempted. The pilot and aircraft survived that one but had the takeoff not been aborted precisely when it did, the results could have been catastrophic. While I don’t recall whether or not I had a nice hot meal that night, the recollection of the experience is still warm and fresh in my mind. The PAVE checklist is meant to be!

Every pilot has a responsibility to set and live by standards. What are your minimum standards? Do you find yourself relaxing them at times? Have you ever caved to external pressure? Let’s each look within and evaluate the risks as part of our preflight action. The PAVE checklist is not only the way for the next generation of pilots but a path we would do well to find ourselves on. Pilot (Personal), Aircraft, enVironment, and External Pressures.

Get Started With Your Flight Training Today

You can get started today by filling out our online application. If you would like more information, you can call us at (844) 435-9338, or click here to start a live chat with us.

Exploring a Commercial Airline Pilot’s Quality of Life

Starting off as a commercial airline pilot is no easy task.

Jennifer Roth

To anyone on the outside of aviation, the life of an airline pilot sounds exciting and luxurious. However, that is just not the case, especially in the early years of a pilot’s career. Typically when a pilot begins their career in the airline world, they are probably carrying a load of student loans and surviving as best they can. And considering regional airline pay can start as little as $22,000 a year, it can be difficult for a person to afford much. Commuting, crash pads, time away from home as well as sitting reserve and allotted benefits from the airlines all affect the quality of life for a commercial airline pilot.

Commuting

With any job, commuting is difficult. The longer the commute, the more exhausting and draining it can be on a person. With commercial airline pilots, commuting will most likely be a part of life, at one time or another. Unless a person lives in a major city such as Los Angeles, Houston, Dallas, Atlanta, and so on, they will more than likely commute. And many times, even if they are living in a major city, they may not be able to have that city be their home base for a while so they will still be required to commute. Commuting can be difficult for a pilot regardless of their experience, but especially for a newer pilot who does not make a lot of money. Salary only includes scheduled flight time, so for a person who has to commute, that does not include the time they put in getting to the airport, making a flight and arriving at the location their actual scheduled flight will start. Weather also affects the ability of a commuter to get to their starting destination on time. If there is any weather at any point between where they live and where they work, it can cause a chain of events preventing them from making it there on time. Because of this, the pilot may have to commute a day early to prevent missing their scheduled flights. This is unpaid time and adds time to their trip as well as stress.

Commercial Airline Pilot Crash Pads
Crash pad for an airline pilot or flight crew

Photo courtesy of ABC News

If a person is commuting to a different city than where they live, they most likely will have to have a place to stay. Hotel bills can add up and, as mentioned, the starting salary of a commercial airline pilot is not much. Enter the “crash pad,” a term that pilots know well. It can be anything from a hotel room with multiple bunk beds, to an apartment with bunk beds in every room. This not so ideal living situation allows the commuter to pay a monthly fee anywhere from 50 to 100 dollars, depending on the living quarters, and it will provide a bed for them to sleep in. It is not ideal in the sense that you may not always have a bed (depending on how many pilots are there at the time) or you may be sleeping when other people are in and out, or your bed may be in a closet. This does, however, allow for an affordable alternative while stuck in the city and trying to get home. Many people have to rely on this to have a place to stay when either sitting reserve or stuck due to weather or maintenance issues.

Other pilots, or someone within the aviation industry such as a flight attendant, usually establishes crash pads. This is beneficial because these are the people who have had to rely on them, so they know what is needed as far as space, location and price. Without crash pads, pilots would be forced to either pay for expensive hotel rooms or sleep in crew rooms at airports. Pilots can usually find information about crash pads on airline forum boards, crew rooms, or even just word of mouth from other pilots.

The Commercial Airline Pilot’s Schedule and Time Away From Home

The airline’s totem pole also affects the pilot’s line. A line is their schedule for the month; usually, a new hire will have to sit reserve. So many times they only have a 2-hour call-out if they will be flying. For commuters, this means that on their days to fly they have to be in that city, so it is often the pilot who depends on the crash pads. Sitting reserve is difficult even if the pilot lives in the city they are based in. They may be home but they cannot really make plans because they have to be on call whenever they are on duty. As they increase in seniority, they are able to hold a line and therefore can plan their time off or time away more accurately. Reserve, unless specifically requested by a pilot, usually occurs for new hires if they have plenty of pilots to fly lines, and then again once they upgrade to captain. They fall back down the totem pole for the captain position and may have to sit reserve again depending on how many pilots they have working or their seniority number at that point.

Time away from home is the time that is spent working but not necessarily flying. Sometimes a person may have a flight but once they arrive at their destination, can have a 22-hour sit, or layover. On occasion, this can be fun for a pilot, giving them a chance to see and explore the city they are in. But many pilots have families and time away is difficult, and when they are not getting paid for those hours being away from home, it can be frustrating. Also, a 22-hour sit in Fargo, North Dakota may not have the same excitement that San Diego, California, would. So time away is not always fun for a pilot. Many experiences have shown that a pilot can be gone many days but only accrue a small amount of paid hours to bring home.

Because of this, as many pilots gain in seniority and no longer have to fly reserve, they work towards moving to the base of their choice, which allows them to use their own home instead of a crash pad or hotel, leading to a better quality of life.

In Conclusion

Now, with all this being said, there are many benefits to being a commercial airline pilot. The office view really doesn’t get better than the one they have. From mountains to oceans, farmland, forests, mountains, gorgeous clouds and sunsets, pilots often have amazing picture worthy days. They also have the benefit of flying free. If a seat is available, they can jump on almost any airline to any destination that airline flies to, whether in the US or overseas, such as Europe. They can also have these benefits extend to certain family members as well, so they can often travel with their spouse, children, and / or parents. And not many people get the opportunity to see as much of the United States as pilots do. Finally, as a pilot advances in their career, their pay does go up, especially as they transition from flying with regionals to major airlines. Many commercial airline pilots are able to very comfortably retire after a career with the airlines. And even with all of the struggles, it is a proud accomplishment for a person to say, “I am a pilot”.

Get Started With Your Flight Training Today

You can get started today by filling out our online application. If you would like more information, you can call us at (844) 435-9338, or click here to start a live chat with us.

Featured Image: Keven Menard

Commercial Flight Training for Jet Aircraft: Details Matter

Modern jet airliners come equipped with a multitude of indicators and switches. Strict attention to detail during commercial flight training facilitates the safe carriage of passengers.

Noah Timmins

Becoming a commercial pilot, or an airline transport pilot, according to the FAA, requires 1500 hours of flight time. In the context of working, this would take nine months of full-time work to complete, just to enter the bottommost rung of commercial piloting. Even the most dedicated zero-to-hero first officers complete their generic flight training in 18 months and sometimes spend an extra six months finishing their type rating.

Commercial flight training takes so long because the FAA must ensure that carriage pilots can successfully complete their tasks every time. The act of ferrying persons requires strict adherence to safety rules and regulations in order to be completed successfully. This exposes itself in many different forms: pilots complete their tasks with written checklists, maintenance facilities undergo FAA safety audits, and every person involved in a flight, including ground crew, line technicians, pilots, flight attendants, schedulers, and fuelers, must have extensive and rigorous training on their specialty.

Type-specific Training

Each aircraft operates as a type. A pilot qualified to fly a Boeing 767 does not automatically gain qualification to fly the similar Boeing 777. These two aircraft have remarkably different cockpit layouts, which form a critical component of safe flight. After spending thousands of hours piloting a 767 on long-haul oceanic flights, a pilot jumping into a 777 could reach up and, for example, disable the electronic engine control instead of the yaw damper. The positions of these switches are different in these two airframes, so the pilot’s memory of location is incorrect.

Additionally, two aircraft delivered to separate fleets could even have opposing cockpit layouts. Both Southwest Airlines and WestJet Airlines are delivery customers for Boeing’s 737NG aircraft, but they request slightly different cockpit layouts. While 99% of the cockpit of these two aircraft operators are identical, that 1% difference creates an issue. After all, in-flight accidents only occur when multiple things go wrong at the same time, something commercial flight training is designed to address.

The classic story to illustrate this point is one less-known among the general public. Today, the FAA standard for switch direction requires that to turn a system on, its switch must go up, regardless of where the switch is located. Activating hydraulics on a Boeing 737 entails flicking a switch on the cockpit ceiling up, which is a backward motion. TWA, a vintage airline that no longer flies, requested a cockpit layout from manufacturers wherein all switches pointed forward or up in the activated position. Now, activating this same hydraulic system on the 737 entails flicking a switch on the cockpit ceiling forward, or down.

TWA’s cockpit layout choice here created a major problem for pilots transitioning to or from the TWA fleet. Retraining requires vast amounts of time and money to break the physical habit of switch direction. In an in-flight emergency situation, the difference between throwing a switch forward or backward can seem minute, but could start a chain of events culminating in an airframe loss.

In 1996, a pilot destroyed a Gulfstream GIV when attempting a cross-wing takeoff at Chicago Executive Airport. No one aboard survived the crash. The aircraft veered off the runway into the grass, suffered airframe damage, became airborne, and then impacted terrain next to the airport. The official NTSB ruling points to a single switch in the cockpit that was selected incorrectly.

Large jets have nose-wheel steering through the rudder pedals and a secondary system through a hand tiller, allowing for more extreme nose wheel control during taxi. This particular system, on the GIV, allows the pilot to disconnect the rudder pedals from the steering system, steering only with the hand tiller. This position is intended for use only during a taxi situation. Unfortunately, the pilot – on his preflight – failed to notice this switch, leaving it in the pedal disable position. Thus, during rollout, he lacked the ability to control the nose direction with the rudder pedals, sliding off the runway.

This single selector switch could have made the difference between life and death. Earlier, the GIV had been flown by a different charter company with a different preference for nose wheel steering. Additionally, the pilot in command was relatively inexperienced with the GIV aircraft and may have forgotten about this selector switch. In either event, the pilot noticed the nose veering off the runway, attempted to correct it with rudder pedal input, and did not realize it was disconnected.

This highlights the necessity behind commercial flight training needing to address even the smallest issues. Type-specific training must be in depth and detailed, highlighting every system responsible for aircraft control, no matter how insignificant. In this case, the pilot in command had 16,000 hours of flight time, a remarkable achievement. However, he only had 500 hours in the young GIV type aircraft, meaning that the existence of this selector switch was something that did not exist for 15,500 of his flight hours.

Even Circuit Breakers Are Important in Commercial Flight Training

 

MD-80 cockpit instrument panel

Photo by Kent Wien

Beyond cockpit switches, circuit breakers are a crucial part of any advanced flight training procedure. There is a very specific and detailed procedure for electrically disabling systems by opening circuit breakers and locking them open. This ensures that the system, physically, cannot be reset so it remains open. Pilots and crewmembers must be vigilant in noticing any circuit breaker irregularities and responding to them appropriately.

TWA Flight 841 touches on this issue. The pilot was flying a Boeing 727 in 1979, in level flight, clear skies, with the autopilot engaged. Suddenly, without warning, an odd buzzing sound began and the airplane entered an inescapable right roll, becoming inverted twice with the nose pointing down. Accomplishing every task in the book for slowing the aircraft down, he managed to level off after a substantial altitude loss and later land the aircraft without any loss of life.

This incident occurred for one specific reason: the flight engineer – a necessary crewmember in the old style 727 cockpit – was using the lavatory when the pilot set up the airplane for level flight. One of the classic “cut the corner” strategies employed by cowboy TWA pilots was to extend the flaps one notch with the leading edge slats disabled, extending the span of the wing and allowing for a faster groundspeed. This operation was never approved of or stated in any TWA pilot training documents, but was passed down the ranks through tribal knowledge.

Disabling the leading edge slats entails pulling the circuit breakers controlling their operation. Because of this, the pilot had pulled these circuit breakers but left them unlocked, meaning that any person could have simply pushed the breakers and reset the system. The breakers on a 727 are located behind the pilots and right next to the engineer. Upon his return from the lavatory, he noticed the breakers pushed and simply reset them, without calling out to the pilots or informing them of his decision. This caused the leading edge slats to extend since their control circuits were now energized. However, the extreme speed of the 727 in cruise means that the systems are put under tremendous aerodynamic stress, creating the buzzing sound heard. One slat on the right wing ripped off, causing the roll. This was not established until the aircraft landed and the slat was found seven miles from the incident site.

When undergoing commercial flight training, a large portion of time is spent explaining and practicing circuit breaker procedures. Circuit breakers are electrical safety devices that are required to exist on nearly every electrical system on aircraft. They are designed to automatically open circuits when dangerous situations are possible. They also can be opened manually in order to test or purposefully disable certain systems, such as leading edge slats, weather radar, or lavatory flushers.

Airlines have policies and procedures designed specifically to detail how to properly manually open a circuit breaker for testing, maintenance, or deferral. These procedures exist because situations like TWA Flight 841 exist. By improperly locking the circuit breakers the pilot manually opened, and not telling the absent flight engineer, it seemed to the engineer that these breakers had opened themselves. There was no indication or locking device showing that these were manually opened. Standard procedure is to reset the breakers in this occurrence and monitor them for additional openings, so the engineer did so. This one action almost lead to an airframe destruction and potential loss of life.

These systems’ complexity requires similarly complex training. If the pilot had spent twenty extra seconds to properly follow his training and slip a locking collar on the breakers, the whole incident could have been avoided. A simple mistake involving only a single switch or circuit breaker can result in a complete loss of property and life. Thus, the training procedures for advanced and commercial pilots must cover even the smallest situation possible.

Training Responses To Input

Commercial flight training extends beyond simply where the switches and controls are but also what they do. Pilots must anticipate and find the expected result when undergoing training. A typical trainer aircraft has a run-up check where a pilot tests flight controls and engine controls. The expected response from something like an aileron input or magneto switch is tested for by observing the corresponding gauge or control surface. Pilots are trained to look for these responses and make sure that they match what should be expected.

These kinds of checks are necessary even on larger aircraft. An Airbus A320 operated by Lufthansa named Papa Whiskey exhibited trouble at take off in 2001 at Frankfurt. The pilot could do nothing to stop the left wing from drooping on takeoff, causing the first officer to assume control and fly the plane up to a level flight path at 12,000 feet. The pilots, investigating the issue, found the pilot in command’s control stick was giving backward input compared to the expected response. Pulling it right cause the aircraft to bank left and vice versa.

This specific flight control problem arose from Lufthansa’s maintenance department, where a complete rewiring of the entire interconnected elevator flight control system was required, a total of 420 wires. This is no small task. Once it was accomplished, the maintenance personnel completed all functional checks as required and signed off the plane as airworthy. Interesting, the functional check required by Airbus does not entail physically observing the control surface or forcing the use of both control sticks in the cockpit.

All of the electronic displays in the cabin indicated that the pilot’s side control stick gave correct control input. The pointers all deflected correctly. One would do well to remember that these pointers are only electrical signals received from a computer in the electronics bay of these aircraft. Two wires had been wired up incorrectly during the rewiring, causing the pilot’s stick – and that one alone – to give opposite input to the aileron control systems. Thus, the state of the indicating system in the cockpit and the physical system on the wing were in disagreement.

Lufthansa modified their training and maintenance manuals to add in physical verification of control surface deflection after performing maintenance, specifically to address this issue. The expected response from the control input was not present on the physical airframe itself, but there is no way a pilot can view that portion of the wing from the flight deck without extensive gymnastics. Additionally, the maintenance personnel were trained to look for a response only in the cockpit, which in this case was not sufficient for proper operation.

In Conclusion

Aircraft are some of the most complex vehicles piloted. They come equipped with myriad control switches and circuit breakers, with complicated interconnections and failsafes. Despite this, extensive and deep levels of commercial flight training are required to properly equip pilots and maintenance personnel to recognize the correct switches to operate, how they operate, and what to expect when they do. It is the goal of every airline to equip their employees with the ability to complete these tasks successfully, ensuring the safe and timely carriage of passengers worldwide.

Get Started With Your Flight Training Today

You can get started today by filling out our online application. If you would like more information, you can call us at (844) 435-9338, or click here to start a live chat with us.

Featured Image: Kent Wien

How To Handle a Plane Crash as Pilot-in-Command

A plane crash involving mountains, ground or other airplanes make for a lousy end to a flight.

Vern Weiss

Have you ever thought about what it would be like to be Pilot-in-Command of a plane crash? Just because we don’t like to talk about them doesn’t mean they don’t happen and accidents come in all sizes. Some are surprises such as controlled flight into terrain (CFIT) or running off the end of a runway. Some are intentional like landing when your gear won’t come down or a water-ditching when low on fuel. Then again, sometimes they reach out and grab us unexpectedly like getting entangled in wind-shear. It’s obvious that they’re never a good thing. Even so, unfortunately, there are times when it is inevitable you are going to crash. When such misfortune comes your way the more planning you are able to do, the more you improve the outcome.

When impact with the Earth is a certainty, pilot preparation for it is different than when one is a passenger on a large aircraft airline flight. The most important thing you can do is keep your wits about you. There is an ancient cliché thought to be originally written for helicopters but the sentiment is pertinent for airplanes as well: “Fly it till the last part stops moving.” In other words, keeping aircraft control is paramount.

Pilots in the cockpit of an airliner

Photo by: The Zipper

On a commercial airliner, the safety briefing by the flight attendants covers only the most rudimentary of preparation and this is so because the actual aircraft response to impact is unknown. Federal law requires that persons seated near an emergency exit be asked if they feel they can open the exit door. They usually and nonchalantly grunt, “yeah” and go back to reading their newspaper. I’ve watched experienced airline crews train on opening the emergency exits on a new airplane and it typically takes 2 or 3 tries until they get it right. So imagine the reality when Joe Sixpack is doing it amid screams, a crush of people, cabin smoke et cetera. Although my bringing this up is not really within the context of this article, throughout your flying career you are going to find yourself as a passenger riding in the back of an airplane and I implore you to pay attention, read the placards and take sitting in that vital emergency exit seat seriously.

Most serious injuries and fatalities occur due to impact forces, fire, and smoke. It is not the initial impact but, instead, the second or third impact that injures most people. According to Transport Canada, 22% of smaller aircraft crashes would have been otherwise survivable but post impact fatalities were due to smoke and fire.1

In the frenzied bedlam that occurs in a plane crash, without flight attendants, it is important for pilots to do what they can to assist other passengers. Early in my career, I had just been type rated on a corporate jet and got a job flying one immediately. Since my training and even the check-ride occurred in a Level D simulator, I had never actually been in the airplane. On my first day with the new employer, I was sent on a trip with another captain whose job it was to more or less “keep an eye on the greenie (me).” The first leg of the trip, he climbed in the left seat while I was to administer the passenger briefing and close the door. Imagine my embarrassment when it came time for me to close the aircraft entry door and I had no idea whatsoever how to operate the mechanism! Now consider how bewildering egress from a smoke-filled airplane, possibly upside down in water would be to a passenger! Any fatal plane crash is sad but the crash of singer Rick Nelson’s DC-3 is particularly horrible because the pilots climbed out of the burning plane through the cockpit windows while the doomed and unassisted passengers remained inside.2

It is incumbent on every pilot able to do so to assist any and all occupants in a plane crash.

There are preparations to be made prior to an inevitable plane crash and these things are applicable for any non-standard landing such as when the gear won’t come down. Safety experts counsel airline passengers to wear non-flammable clothing, remove sandals and high heels and put on a coat if it’s cold outside. But in small planes, you likely will have such preparations stashed away and inaccessible by the time you will need them. So what CAN you do?

  • Advise all passengers of what is happening so they too can prepare.
  • Passengers, as well as pilots, should remove all sharp objects (pens, pencils, glasses, etc) from pockets and jewelry.
  • Cinch up the seat belts and shoulder harnesses.
  • Secure (as much as possible) any loose objects. Upon impact(s), anything loose will fly forward.
  • Radio your intentions. If not on an ARTCC frequency transmit in the blind on 121.5. All FAA towers, FSS and ARTCC facilities monitor this frequency.
  • If fuel dumping is possible, do so. The less there is to burn the less that might burn. (It may also improve handling characteristics of the aircraft.)
  • Isolate the fuel systems if possible. If there is a cross-feed, close it.
  • If possible, remove flammable cargo by tossing it out of the aircraft.
  • Review any pertinent emergency checklists such as those for gear up landings or ditching.

If landing off airport and out in the middle of nowhere you can sometimes get an idea of the wind from cows and horses. Cows, deer, and horses tend to stand north-south but in strong winds, they face into the wind whereas sheep face away from the wind.3 Pay attention to trees, flags or smoke on land and in water land between the swells or if that’s not possible, land on the backside of a swell. See the Aeronautical Information Manual Chapter 6 Section 2 for more information.

Once the aircraft as come to rest it obviously is essential to get everyone out as quickly as possible. To minimize the potential for injury during the evacuation, pilots should take all necessary actions to shut down the engines by using respective fire handles, condition levers, or fire push button to isolate the aircraft engines. This may not be possible due to the extent of aircraft damage.

In the event that the aircraft has come to rest and does not appear to be threatening smoke, fire or explosion, if possible, remove items that will assist in survivability in the event that help isn’t immediately available. Unless you have good reason to believe that search and rescue aid is not forthcoming, it is a better idea to remain with the aircraft. Collecting materials to start a fire and acquiring a mirror (or shiny piece of metal that can be used as a mirror as well as a women’s make-up compact) might be helpful for signaling SAR aircraft.

Although water seems to be more forgiving than the gritty hardness of terra firma, impact in water is not too different than with land. Typically there is a bounce and the structural damage may be just as bad. “Fly it till the last part stops moving” is good advice. Touch down as slowly and as softly as possible and keep flying until the aircraft has stopped. This means to continue to increase back pressure on the elevator control as the aircraft decelerates until the nose can no longer be held off the ground. Landing in plowed fields or on rough terrain often results in the aircraft flipping over on its back at the very end. Be prepared for this with tightly cinched seat belts and shoulder harnesses and securing any loose objects.

When a plane crash is inevitable, maintain slow, soft, control and let the aircraft absorb the impact forces instead of its occupants. Wings can be as effective as a bumper on a car.

You often hear it said that any landing you walk away from is a good landing but this is nonsense. Good landings infer a certain degree of finesse and precision. However in matters of crash landings, there is no such thing as a “good landing.” The best that one can hope for is a survivable landing. Plan for it accordingly because you’ll not have another chance to go around and try it again.

Get Started With Your Flight Training Today

You can get started today by filling out our online application. If you would like more information, you can call us at (844) 435-9338, or click here to start a live chat with us.

Sources:

1 – http://www.skybrary.aero/index.php/Post_Crash_Fires and http://www.tsb.gc.ca/eng/rapports-reports/aviation/etudes-studies/siia0501/siia0501_sec2.asp

2 – Teenage Idol, Travelin’ Man, Philip Bashe, Hyperion Publishing 1992.

3 – http://www.livescience.com/5083-cows-strange-sixth-sense.html and http://www.pnas.org/content/105/36/13451.full

Feature Image: Enrique

Understanding How to Fly a Commercial Plane

A vastly different world exists when transitioning from flying small planes to understanding how to fly a commercial plane.

Vern Weiss

You’ve been grinding away making yourself marketable to large jet companies. Until now, your sphere has been light planes weighing only a few thousand pounds. The phone rings. You’ve been selected for an upcoming class of new-hire pilots flying “heavy iron.” “Flying is flying, right? How different can it be, right?” This new world is not dissimilar from that of someone who has driven only automobiles then transitions to 18-wheelers. Welcome to “The Big Time.”

By “heavy iron” we are talking about aircraft substantially larger than small corporate jets and turboprops. In the simplest of terms, the kinds of aircraft I am referring to are those in which you don’t have to bend to enter or walk through the passenger cabin or into the flight deck. Notice I said, “flight deck?” On larger airplanes, the cockpit is customarily called the flight deck. Behind the flight deck is the “cabin.” The place where the coffee pot and food preparation equipment is called the galley and the john/potty is commonly called, “the lav” (shortened form of “lavatory”). The men and women who supervise passengers in the cabin are called “flight attendants.” The “head” flight attendant is either called the purser, lead or in some cases “A” attendant. Obviously, the big cheese in the front end is called the captain and the second-cheese, first officer. “Co-pilot?”- nuh…not used so much.

How to Fly a Commercial Plane –  The Flight Deck

As a first officer, what’s the first thing you’ll probably think about when entering the flight deck? Preflight? Computations? No. Garbage! In light plane flying, the most garbage you probably accumulated on flights was the wrapper from a Snickers bar. On large aircraft, you’ll likely fly multiple legs that are longer and the garbage mounts up. You and the captain will toss out the equivalent of a kitchen-sized garbage bag full of used coffee cups, scrap paper, TOLD cards1, weather/release packages, wadded-up Kleenex, pop cans etc. As such, your first order of “housekeeping” will be to obtain a small garbage bag and hang it on one of the pilot seat levers.
Depending on the company’s policies, as first officer, you might start the auxiliary power unit (APU) if it’s a “dark” airplane. This gets electricity flowing in the aircraft and provides heat if it’s cold or air conditioning if it’s hot.

How to Fly a Commercial Plane –  Preflight

Your company may consider the first officer the designated preflight-doer. This means you do a cockpit preflight by checking switch and control settings and doing a walk-around inspection outside. There are some items on these checklists that will be only accomplished on the first flight of the day and not redone on subsequent legs. FAA Part 121 and 125 companies require an external pre-flight and post-flight “walk-around,” regardless of how hard it’s raining outside.
When both crew members are present on the flight deck, the entire checklist is verbalized. Some items only the captain responds to and other items are reserved only for the first officer’s response. Depending on the aircraft, this verbal checklist recitation is recorded on the cockpit voice recorder (CVR). Ordinarily the CVR begins recording as soon as power is applied to the aircraft either via APU, ground power unit or the battery switch selected ON. While older CVRs only record the last 30 minutes of radio and pilot conversation, newer Flight Data Recorders (FDRs) typically store the last 2 hours of ambient noise and conversation.

Pilots waiting to start taxiing Boeing 757

Photo by: Kent Wien

Once the flight crew receives its load manifest (passenger count, baggage) and has obtained the final “numbers” on fuel load (either through dispatch release or from crew member computations), the engine power settings, V-speeds and minimum needed runway lengths are figured out. This task is usually the first officers. Both pilots electronically or mechanically move little colored markers around on their airspeed indicators to denote important speeds. These are called “bugs.” Glass cockpit screens will “bug” the speeds graphically. It is different from light planes where take-off power amounts to just pushing the throttle(s) all the way to their limits. Because you are dealing with a variety of critical engine limitations, you need to factor in variables like weight, air temperature, and wind speed. Maximum power settings may be required due to available runway length. Use of anti-icing equipment needed for take-off also reduces the available take-off power. Crew computations are necessary to protect against over-torque and over-temp on engines. Noise abatement climbs and “flex” power settings will also require consideration. A “flex” power setting is used at the captain’s discretion when the runways are long enough to use reduced power for takeoff. This reduces noise, engine wear, and maintenance cost. After the “housekeeping” duties are done and you’re within 30 minutes of the flight plan’s proposed departure time, you can radio Clearance Delivery for the instrument clearance.

How to Fly a Commercial Plane –  Taxiing and Takeoff

The flight actually starts with the captain setting the parking brake and calling for the engine start checklist. It is common for the first officer to start the engines. Once the after engine start checklist is complete it’s time to taxi. In large commercial aircraft operations, taxiing is permitted only when all passengers are seated. (There’s always some clod that feels he must stand up to get a roll of Certs out of his carry-on luggage so he can hit on the girl seated next to him.) In Part 121 operations, the flight attendants are required to notify the captain and the aircraft has to stop moving. Obviously, this boogers things up for ground controllers and all aircraft waiting behind you.

In the taxi check list, you set the flaps and trim and the flying pilot will verbalize a takeoff briefing. This briefing is vitally important and delineates who’s flying the leg, confirmation of power settings, climb profile and standard departure procedures to be used. Additionally, planned action in the event of an emergency is included. (“In the event we lose an engine after V1 we’ll continue the takeoff but since we’ll be above maximum landing weight we’ll advise ATC we need to burn off fuel or dump fuel prior to returning to this airport,” or whatever is prudent.)

A Boeing 767 taking off at sunet

Photo by: Paul Nelhams

Let’s say this is going to be your leg to fly. Even so, typically the captain generally taxis the aircraft and lines up the aircraft on the runway prior to takeoff, after which you’re advised to hold the brakes, then, “it’s your airplane.” Once cleared for takeoff, you will increase thrust, attentive to ensure both engines are accelerating equally until you’re close to the target power setting. You may hold full forward pressure on the yoke to place as much weight as possible on the wheels for traction. As you begin to move you will find the rudder/brake peddles are sluggish and won’t become effective until you’re beyond 40 or 50 knots. Meanwhile, believing that you’ve got the power set close to what it should be, you say something like, “SET POWER” and the non-flying pilot (the captain) refines the power settings as you concentrate on the takeoff.

Several call-outs are pretty standard on large aircraft: One is “80 knots” and you respond with “Cross checked.” You’re just confirming that your and the captain’s airspeed indicators agree. Next, the non-flying pilot calls out, “V1.” This is the point of no return: you’re goin’ flying regardless of what happens! High-speed aborts are often disastrous. Even if you blow an engine after V1, you’ll continue the takeoff roll. Shortly afterward, you hear, “Rotate.” You’ll pitch the nose up to the desired attitude and hold it while you wait for the wheels to clear the pavement. Once airborne the non-flying pilot says, “positive rate” (meaning you’ve got a positive rate of climb and not sinking back to the ground) and you’ll respond, “Gear Up.” The captain reaches over and retracts the landing gear. The first time you do this it may surprise you how noisy the hydraulic pumps are and how loud the “ker-thunk” is when the nose gear slams against its uplocks. Depending on aircraft profile, around 400′ AGL you’ll call for the flaps up. Some aircraft momentarily level out around 1,000′ AGL to accelerate at what’s called the acceleration altitude; then resume the climb.

How to Fly a Commercial Plane –  In Flight
Two Pilots in the flight deck of a commercial plane

Photo by: Condor

Use of the autopilot is encouraged after the configuration changes but especially passing through 10,000 feet. Reduced separation requirements mandate that autopilot use is required between FL290 to FL410 (29,000 to 41,000 feet).

You’ll climb to the cruise altitude using your familiar airspeed indicator but at a point called the cross-over altitude2 will transition to flying by Mach number. The reason for this is that, at altitude, the Mach number is limiting whereas your indicated airspeed will be lower than you’re used to seeing and be of little value.

Control responses are slower and take more muscle. The payoff is more stability. Standard rate turns (on which instrument flying is predicated) are no longer are used. Because you’re moving faster you’ll only use half standard rate in turns. In light planes, standard rate requires 15 to 20 degrees of bank angle. In large planes, producing a 3° per second standard rate turn would require a bank angle of 50°. The Aeronautical Information Manual states that turns in a holding pattern should be at 3° per second to a maximum of 30 degrees of bank, whichever results in the lesser bank angle. “Standard rate” in large aircraft typically is no more than 1.5° per second.

How to Fly a Commercial Plane –  Approach and Landing
A boeing commercial airliner landing

Photo by: Roy

As you approach your destination a new TOLD card is needed containing runway length at your weight, speeds and go-around power settings. Landing speeds are “bugged” and ATIS information, approach procedures, and techniques for special conditions such as wet/slick runways and LAHSO3 are reviewed and briefed. The approach may seem to move pretty fast at first. The difference is flying approaches in light planes at 100 knots compared to 120 to 160 knots is conspicuous. But after you get accustomed to it, light plane approaches will seem to take forever.

“Grease job landings do not a pilot make.” In large aircraft, you’re interested only in stabilized approaches and touching down at the desired touchdown zone. It may seem awkward how high you are when landing. Depending on aircraft you’ll actually be sitting anywhere from 20 to 100 feet above the ground when touching down. Good positive runway wheel contact and minimal “wing-wagging” trumps a grease job. Yep, in large airplanes, you pretty much wanna “fly ’em on.”

Thrust reversers are maybe new to you.4 Before using them, it is important to ensure both reversers are equally deployed otherwise you’ll spin around faster than that guy with the Certs does when checking out good looking women after arriving in Ft. Lauderdale.

On landing roll-out, the non-flying pilot may call out “80 knots” which is your cue to begin stowing the thrust reverser levers. At 40-50 knots the captain will say something like, “I got it” or “my airplane” and take over control, taxiing to parking. You’re done with all flying pilot’s duties at that point and resume radio work and the “clean-up,” retracting the flaps, re-setting the trim and performing the after landing checklist.

One thing that is sometimes hard for first officers to understand is that the airplane is the captain’s airplane. It is the captain who is responsible for that airplane and you are there only to
assist. Although it is customary to alternate flying legs, it is at the captain’s discretion only. Privilege in a multi-crew setting is not a 50/50 proposition.

In Conclusion

The difference between small and large plane flying is “bigness.” Its numbers and speeds are higher. Pilots sit two or more feet apart. Its weight is computed with index numbers such as 100.3 instead of 100,300 pounds. There’s at least one extra fold out seat on the flight deck for jump seaters. Center of gravity is a location measured in percent within the wing’s aerodynamic chord instead of inches after of a datum line. But there is one thing that makes learning how to fly a commercial plane worth it over smaller planes, besides the freedom to stretch your legs and walk around, and that is the salary is usually much better and who can find fault with that?

Get Started With Your Flight Training Today

You can get started today by filling out our online application. If you would like more information, you can call us at (844) 435-9338, or click here to start a live chat with us.

Footnotes:

1 – “TOLD” cards are take-off and landing distance data cards and prepared for each leg and generally include ATIS information for the airport from which you’re leaving and approaching. Once the leg is complete the TOLD card gets discarded. Sophisticated multi-function displays are also being used that present this information.

2 – Crossover Altitude is the altitude at which a specified CAS (Calibrated airspeed) and Mach value represent the same TAS (True airspeed) value. Above this altitude, the Mach number is used to reference speeds.

3 – LAHSO – Land and Hold Short Operations is landing on one of two intersecting runways requiring precise planning. Pilots are not required to accept a LAHSO clearance to land but it can expedite your landing at busy airports.

4 – In turboprops, deceleration is handled with a propeller reversal called “beta” which also slows the aircraft by reversing thrust.

Featured Image: Wilco737

The Benefits of Becoming a Flight Instructor

Jennifer Roth

With each stage of working towards a career as a pilot, a rewarding feeling of accomplishment is acquired. Whether it is the very first solo flight or passing the ATP check ride, each step is important as well as celebrated. Where a pilot wants to go with their future in the sky depends on which path they take. Someone wanting to just fly for fun on the side may only obtain their private pilot certificate, while others wanting to fly for a major airline will continue on. Flight instructing is not mandatory in aviation. Many pilots have gone on to very successful careers without ever instructing from that right seat, however, there are many wonderful benefits to becoming a flight instructor that come with learning to teach students how to fly.

Flying is expensive and for most people, and building hours in an airplane is out of the question and out of their price range. Becoming a flight instructor allows for a pilot to build their flight hours while getting paid. This is a win-win. Many times, wherever the pilot completed their training will hire them on as an instructor because they know they have been trained accordingly and know the procedures for their particular training program. Becoming a flight instructor is encouraged for anyone needing to build those 1,500 hours that are required to even attempt the ATP rating.

Let’s be honest, the amount of hours required to receive a Commercial Pilot Certificate can feel daunting to the newest of pilots when thinking about going out into the real world. One of the greatest benefits that becoming a flight instructor offers is to continue to learn through teaching, and one of the best ways to learn more is to teach someone who does not know. Flight instructors do not know everything at the point they start flight instructing. When students have questions, they may not know the answer but they have a multitude of resources available to find out. Through this, the instructor has now learned something they did not know, and most likely will never forget. The best way to expand your knowledge bank is to continually make deposits and flight instructing will always require studying and learning.

We can always create scenarios of “what-if” but even the best-trained pilot cannot know or practice every situation that can occur. Flight instructing takes someone out of his or her comfort zone and requires him or her to stay on his or her game. If pilots get too complacent, that is when an accident can occur. Lucky for instructors, the things students will almost always keep complacency from occurring because students tend to do the craziest things. Flight training allows for practicing in real life scenarios. Situations such as unforecast weather, airplane trouble, air traffic, and other events all help instructors quickly react relying on their training. This helps make them not only a better instructor but also a better pilot in the long run.

F-16 jetfighter in flight

Photo by Mark Sontok

Being a flight instructor, here’s a situation a student and myself went through when practicing pattern work at Tulsa International, where F-16’s also spend daily time on pattern work. On this particular afternoon, they began their pattern work while we were on the smaller runway. When the military does their training, the public can only hear the controller talking to them, not their responses. Of course, with fighter jets, things happen way faster than they happen in a Cessna 150, so when we were about midfield downwind, we were waiting on our clearance to land. We continued to wait as we came in closer for landing. We could hear the controller repeatedly giving commands but had no ability to break in and request a landing clearance. As an instructor, I had never been in a situation where the controller forgot we were in the pattern and we had no way of breaking in. It took a go-around due to lack of landing clearance before the controller realized we had been forgotten. At that point, we terminated our pattern work and headed back to our home airport. It was a good experience for both me and my student to experience what happens when other priorities interfere, leaving us to fall back on our training. It gave us both an opportunity to walk through what we needed to do and we had a good ground lesson afterward.

Not all pilots will become instructors, but those who do will gain valuable and life-long experience that cannot be found any other place. There are even a few pilots who, after becoming a flight instructor, stay instructors for the remainder of their career, creating strong bonds with many future pilots and contributing to aviation through teaching. Flight instructing shows future employers that the pilot has commitment and the desire to do what is necessary to be the best pilot they can be.

Get Started With Your Flight Training Today

You can get started today by filling out our online application. If you would like more information, you can call us at (844) 435-9338, or click here to start a live chat with us.

Falling Back On Pilotage After an Equipment Failure

Shawn Arena

Hello, and welcome back to another installment of one of my ‘lessons learned’ stories from personal flying experiences over the years. This story illustrates “always have a Plan ‘B’ when Plan ‘A’ fails,” and the usefulness of learning navigation techniques like pilotage and dead reckoning.

Another Breakfast Trip to Northern Arizona

Like a previous story about a breakfast flight to northern Arizona, this story has a similar theme, but with quite a different start. This flight experience takes place in May 1999. I had rented and was flying one of my favorite Cessna 172’s (N361ES) from the local flight school at Glendale Municipal Airport (GEU) to Earnest A. Love Field (PRC) in Prescott, Az. As I remember, takeoff was uneventful. However, less than five minutes following takeoff (and about the time I was switching radio frequencies from GEU Tower to Albuquerque Center (ABQ Center) for flight following), my navigational equipment failed. But as the late radio personality Paul Harvey used to say, “now for the rest of the story.”

Technology is Wonderful … When it Works

At the timeframe of my flight, avionics technology had jumped leaps and bounds from strict analog instrumentation to digital. Specifically, this flight school’s aircraft were transitioning to global positioning system (GPS) navigation with a ‘moving map’ feature. Now having been an aviation geek and assistant professor for an aviation college, I prided myself in keeping up with all the latest trends, especially those related to flight navigation. I had read up on the ‘moving map’ capability and was intrigued and excited to see it operate in person.

First, a trip down memory lane (for those old enough to remember). When television had matured enough in technology in the mid-1950’s for Joe and Jane Public to purchase, it was a thrill (so I was told…) to see electronic images on a relatively small black-and-white screen, of real live television. Fast forward to our flight, and I was just as thrilled to try out this new ‘gadget’ called a moving map.

Well, I got about 4.5 minutes of my new experience, when ‘Poof’ it disappeared! After the first initial “What just happened?” moment, reality set in and a little voice (maybe my first flight instructor, Lance) in my head said, “Shawn, they have been flying airplanes since the Wright Brothers, using easy to follow navigational methods called ‘pilotage’ (the art of flying using fixed visual references on the ground by means of sight to guide oneself to a destination, sometimes with the help of a map or nautical charts) and ‘dead reckoning,’ (calculating one’s current position by using a previously determined position), so I just switched mental gears and the flight continued uneventfully.

Lessons Learned From That Day That We Are Still Learning Today

As the saying goes, “If one does not learn the lessons from the past, it will repeat itself over and over again.” Such is the case with this small incident. To this day, I tell my aviation safety and human factors students that this was the best thing to happen to me in my venture into electronic avionics. To simply switch navigational processes to those like pilotage taught in ground school and basic flight training turned out to be a non-event for me since I was taught “the old fashioned way” of flight navigation.

Unfortunately in this ever increasing reliance-on-technology world that we live in, things are great until a failure occurs. In theory, to lessen the flight crew’s burdens of manually flying the aircraft by conducting repetitive manual inputs, automation was a great invention. However, therein lies the trap: over-reliance on one system and complacency. Two recent high-profile commercial aviation accidents attributed to technology failure of automated avionics during the last 7 years bring home the point – always have a backup plan.

June 1, 2009, Air France flight 447 was flying through the Intertropical Convergence Zone (ITCZ) over the Atlantic Ocean in a severe thunderstorm, en route to South America. It crashed as the automated flight control system became unstable and overloaded due to task saturation. This accident is now deemed one of the classic technological failure events in aviation. (It must be noted, however, that a post-accident report indicated that the flight crew had not been trained to recognize automation failure that resulted in an aerodynamic stall).

Asiana Airlines Flight 214, on final approach to San Francisco International Airport on July 6, 2013, hit the seawall and crash landed on the airport. The National Transportation Safety Board (NTSB) report revealed that the flight crew did not have enough experience in the automated system of the Boeing 777, and when the autopilot disconnected, airspeed and altitude began dropping without anyone on the flight deck recognizing it until it was too late to conduct a missed approach.

A Boeing 777 in flight

Photo by: BriYYZ

The moral of these examples and of this story is to not only have an intimate knowledge of your avionics but be prepared to manually fly the aircraft if necessary. As these examples demonstrate, it’s important to maintain currency in manual flight, including techniques like pilotage. It doesn’t matter if you are flying a Cessna 172 or a Boeing 777, the principles remain the same: always stay ahead of the airplane OR the airplane will take you where you don’t want to go!

Get Started With Your Flight Training Today

You can get started today by filling out our online application. If you would like more information, you can call us at (844) 435-9338, or click here to start a live chat with us.

Additional Aircraft Safety Articles:

Positive Exchange of Flight Controls and Language

How Crew Resource Management Makes Flying Safer

Competency vs Proficiency: A Look at Flying Aircraft Safely

Featured Image: Todd Lappin

When Is a Private Pilot Ready to Fly With Family and Friends?

Dr. Mary Ann O’Grady

Prior to making the decision to take family and friends flying, a new or recently licensed private pilot should carefully review the appropriate FAA Regulations under Sec. 61.113Private pilot privileges and limitations: Pilot in command as follows:

  • (a) Except as provided in paragraphs (b) through (h) of this section, no person who holds a private pilot certificate may act as pilot in command of an aircraft that is carrying passengers or property for compensation or hire; nor may that person, for compensation or hire, act as pilot in command of an aircraft.
  • (b) A private pilot may, for compensation or hire, act as pilot in command of any aircraft in connection with any business or employment if:
    • (1) The flight is only incidental to that business or employment; and
    • (2) The aircraft does not carry passengers of property for compensation or hire.
  • (c) A private pilot may not pay less than the pro rata share of the operating expenses of a flight with passengers, provided the expenses involve only fuel, oil, airport expenditures, or rental fees.
  • (d) A private pilot may act as pilot in command of a charitable, nonprofit, or community event flight described in Part 91.146, if the sponsor and pilot comply with the requirements of Part 91.146.
  • (e) A private pilot may be reimbursed for aircraft operating expenses that are directly related to search and location operations, provided the expenses involve only fuel, oil, airport expenditures, or rental feeds, and the operation is sanctioned and under the direction and control of:
    • (1) A local, State, or Federal agency; or
    • (2) An organization that conducts search and location operations.
  • (f) A private pilot who is an aircraft salesman and who has at least 200 hours of logged flight time may demonstrate an aircraft in flight to a prospective buyer.
  • (g) A private pilot who meets the requirements of Part 61.69 may act as a pilot in command of an aircraft towing a glider or unpowered ultralight vehicle.
  • (h) A private pilot may act as pilot in command for the purpose of conducting a production flight test in a light-sport aircraft intended for certification in the light-sport category under Part 21.190 of this chapter provided that –
    • (1) The aircraft is a powered parachute or a weight-shift-control aircraft;
    • (2) The person has at least 100 hours of pilot-in-command time in the category and class of aircraft flown; and
    • (3) The person is familiar with the processes and procedures applicable to the conduct of production flight testing, to include operations conducted under a special flight permit and any associated operating limitations.

Once the new private pilot has determined that he or she is in compliance with the FAA regulations in Sec. 61.113, which prohibit remuneration for the services of the new PIC, his or her willingness to carry passengers is typically positively correlated with his or her level of self-confidence in his or her ability to fly the airplane. Although the acquisition of a private pilot’s certificate is often regarded as a prized possession, it is wise to remember that it is essentially a license to [continue to] learn, and as such, it is ranked as the most sought-after of the four levels of the more basic pilot certifications (private, student, recreational, and sport). Pilot certificates can be compared according to the following criteria: instruction flight time, solo flight time, total flight time, average total flight time, average costs, aircraft weight, aircraft seating, aircraft occupancy, aircraft max speed, aircraft range, aircraft engine type, aircraft max horsepower, aircraft number of engines, aircraft propeller types, aircraft landing gear configuration, aircraft max altitude, night flight experience, bad weather flight experience, international flight experience, sightseeing charity flight experience, and airport / airspace experience which reflect the skill level and practical experience of the pilot.

Private pilot and a Cessna aircraft on the runway

Photo by: Juraj Patekar

The private pilot certificate has the fewest limitations, and by earning additional training / endorsements it can be upgraded to include more advanced capabilities, such as flying in IFR weather conditions or flying complex aircraft with two or more engines, retractable landing gear, faster cruise speed, etc. The acquisition of more advanced endorsements through additional flight training can easily result in logging hundreds of hours of flight time which also serves to enhance flying skills and expand the awareness of safety practices. The FAA ensures that flying remains a very safe activity by certifying aircraft to a very high, rigid standard, and requiring that pilots undergo regular refresher training.

An excellent way for new private pilots to save money while they fly, enjoy access to great aircraft while spending time with friends and family is to join a flying club. Flying clubs are conveniently located across the country and open to all levels of piloting skills. A flying club can be described as an aviation co-op uniting a group of people who are interested in sharing the cost of aircraft ownership in an effort to make flying more affordable. Undoubtedly, dividing the acquisition cost of an airplane, the monthly recurring costs, such as hangar fees, annual maintenance, and insurance among several people makes great economic sense, but flying clubs offer a great deal more than just affordable flying. This includes quality flight training opportunities, the access to a variety of aircraft, and the opportunity to construct a sense of community among aviation-minded individuals whether they are just entering the field of aviation or reigniting their passion for flying.

The governance of flying clubs is guided by the FAA’s Minimum Standards 5190.6B which specifically grants them the rights of an individual rather than a commercial operator. This document allows flying clubs the right to form and operate at an airport in the same way that an individual has the right to base his/her airplane on the field. If an airport does not have a published Minimum Standards document, the airport manager is the final authority regarding the types of operations in which the flying club can engage. Generally, flying clubs are governed as follows:

  • Flight club members CAN receive flight training in the flight club aircraft from anyone who is authorized by the airport authority to provide flight instruction on the field.
  • Flight club members who are CFIs CAN provide instruction to other club members in the club aircraft.
  • Flying club members who are mechanics CAN perform maintenance on aircraft that belong to their club.
  • Compensation for member-performed maintenance and flight instruction depends upon approval from the airport manager.
  • Flight clubs CANNOT offer scenic flights, charter service, or any other commercial activity.
  • Flight clubs and their members CANNOT lease or sell any goods or services to anyone other than other members of the club (unless it is the sale or exchange of its capital equipment).
Get Started With Your Flight Training Today

You can get started today by filling out our online application. If you would like more information, you can call us at (844) 435-9338, or click here to start a live chat with us.

The Reasons Behind Male and Female Pilot Error

Despite the different reasons for male and female pilot error, cockpit resource management can make single-pilot flying almost as safe as in a two-pilot environment.

Vern Weiss

In the 1970s there was a rash of airline accidents. This was particularly startling because the accidents did not involve inexperienced flight crews but, instead, professional and highly trained flight crews! It was revealed in subsequent accident investigations that the accidents were preventable and largely due to human errors and frailties as well as crew members not utilizing all the resources available to them, including each other.

What I am about to tell you may find disfavor with some and if this is so, it is not my intention to cause controversy, but instead discuss these findings and how they relate to safer flying. In 2001, Johns Hopkins University’s Bloomberg School of Public Health released a report of the findings from research done on behalf of the National Institutes of Health and Centers for Disease Control and Prevention stating:

Male pilots crash due to inattention. Female pilots crash due to aircraft mishandling.1

Johns Hopkins professor Susan Baker pointed out that air crashes by males are most often due to flawed decision-making and inattention. Flying aircraft with known mechanical problems, running out of fuel and landing gear up, the study reported, are typically male problems. Whereas women tend to be more cautious, follow the rules but exhibit more errors such as incorrect rudder use, poor control response and recovery from stalls.

Citabria aircraft suffering from landing gear accident possibly caused by pilot error

Photo by: Jeremy Zawodny

So regardless of who you are there’s work to be done by everyone. Each of us may have weaknesses and though the weaknesses are in different areas we should put our emphasis on mitigating them so we can limit or avoid pilot error.

Crew Resource Management was originally centered around airline operations with 2 or 3 pilot crews (flight engineers on aircraft such as the Boeing 727 and McDonnell Douglas DC-10 were considered the third pilot). However, when cockpits become downsized to a flight staff of only one pilot, things change dramatically. 71-80% of all general aviation accidents are due to pilot error and a single pilot operation statistically is 1.6 times as probable of having an accident.2

Isn’t CRM What We Were Supposed To Be Doing All Along?

When I first heard about the concept of CRM, I didn’t quite understand it because I thought that its methodologies were what pilots did naturally. But apparently they weren’t. I thought the elements of single pilot CRM were pretty much covered by FAR 91.103 (Preflight action – “Pilots are required to familiarize themselves with all available information concerning the flight prior to every flight”) and 91.7 (Aircraft airworthiness – “The pilot in command is responsible for determining that the airplane is airworthy prior to every flight.”). However, NTSB accident reports indicate otherwise. Have pilots just become too lazy to do due-diligence properly when guiding a lethal craft at high rates of speed on invisible roadways without shoulders on which to pull off when things get hectic? Or does the seriousness of what we’re doing when flying get lost in distractions and minutia?

The choices and solutions to the challenges, decisions and tasks of flying seldom are limited to a single one. Single pilot CRM begins with recognizing your own limitations and acknowledging your own experience level, personal minimums and physical and mental health. Are you really cranked-up after a big fight with your boss? Don’t go flying. Think you’re coming down with the flu? Don’t go flying.

Cessna aircraft with glass cockpit

Photo by Dmitry Sumin

Limitations are not absolute. Some days your personal limitations may be different than others. Let’s say you’ve been renting a Cessna 182 a lot but today you arrived at the airport and the only 182 available is one with advanced avionics with which you’re not familiar. Good single pilot CRM might dictate that you should not attempt flying that airplane in deteriorating weather even though you’d be quite comfortable in one of the other airplanes with more familiar avionics. Some of the sloppiest flying I have observed by otherwise skilled pilots was when they were flying sick (and also when they are sick of flying). So single pilot CRM begins with you. Once you determine that you are fit for flight you can begin a running assessment of all the resources available inside and outside of the aircraft before and during the flight.

The FAA developed a simple memory gouge to help single pilots evaluate every component of the pilot’s job. They call it the “5 P Approach” and this mnemonic represents (in order) PLAN, PLANE, PILOT, PASSENGERS and PROGRAMMING.

For each “P” you collect all pertinent information available, analyze it and then make decisions. Most importantly, always be willing to change your plan should conditions indicate the need for a change. Head-strong pilots have got themselves into trouble by making a plan and sticking to it even when alternatives would have been more prudent.

Start by getting a good weather briefing and study your route, carefully working out the fuel requirements based on both. This includes potential deviations you see which might need to be made for weather. Use all the resources that may help. Pilots who have just landed are excellent resources to fill you in on weather conditions. If the FBO has a flight planning room, print out all the weather information you think might be useful so you can take it with you. What good does a METAR report do when it’s an hour or two old? I’ll tell you. You can spot trends in weather and determine if it is deteriorating, improving or staying the same.

Next analyze your plane. Assess its airframe, engine, systems and avionics. If you’re knowledge is a little weak about one of the systems like its avionics, bone up before the flight. Pilots who must use an instruction manual during flight are adding to their workload. It’s helpful to stop by for a brief visit with the mechanic who may have worked on the aircraft you’re flying to ask about recent squawks or maintenance that’s been done. Even if something was recently repaired it might justify extra vigilance as you fly.

The planning portion for a cross-country flight is as important as the planning portion to determine aircraft performance and limitations. If you’re going to have a big fat guy sitting in the back seat, taxiing out to the runway is not the time to be wondering what elevator setting you should set or worse…when rocketing down the runway and wondering why the airplane rotated so soon and controls feel so spongy. Go back to basics and do a careful weight and balance computation. FAR Part 121 and 135 commercial operators do it for every leg they fly.

You may have heard it said that flying is hours of boredom accentuated by moments of “sheer terror,” but it need not be so. If a pilot is paying attention…monitoring…cross-checking…watching the systems, you lessen the chances of pilot error and other surprises befalling your flight. There are usually warnings when things are about to go wrong. The dimming of lights, roughness of the engine, oil pressure fluctuations, they all portend possible problems in the making. Remember, as a single pilot, you are also in the flight engineer’s seat, and can often get a heads-up on potential system problems just by watching, listening, smelling, feeling and comparing.

The third of the “5-Ps” is “pilot.” Are you physically, mentally and emotionally fit to fly? Before you even think about flying you should take a personal inventory. This inventory includes illness. Are you sick or showing symptoms of illness? Are you taking any prescription or over-the-counter drugs? Are there aspects of your life causing stress (job, financial, marital, etc)? How ’bout alcohol? You been tippin’ any? Remember the regs say 8 hours “bottle to throttle” but only then if your blood-alcohol content is less than 0.04%. Are you fatigued? When you’re tired your reflexes, coordination and thinking are dulled. Are you emotionally wrapped-up tight? Sad? Angry? Ecstatic?3 The guy in charge at the FAA (Federal Acronym Administration) stitched together Illness-Medication-Stress-Alcohol-Fatigue-Emotion and came up with IM-SAFE. Get it?

Pilot and passenger in a small Cessna aircraft

Photo by Dan Darling

The number four “P” is passengers. Passengers can come in handy especially when there is go- fer jobs to do like, “hand me that pastrami on rye” or on the ground, “go back in the FBO and ask that receptionist’s phone number for me.” However they also can create distractions, especially when they’re a frightened scare-d-cat white-knucklers, airsick or just a blustering blow-hard that will
not shut up. Although you’re busy as a single pilot, you should provide whatever assistance is within your power to do so to alleviate passenger apprehensions. When busy you might just have to “tune them out” so that you can focus on your job as pilot. Commercial operators procedurally adhere to the cockpit rule of no talking except that which is required for conducting checklists or other duties below 10,000 feet. Although your flying may rarely take you above 10,000 feet it isn’t a bad practice to tell passengers there are certain periods that are “sterile” and no talking is allowed such as when it gets busy on the radio as you approach an airport. You can signify this to them by furrowing your forehead and hissing s-h-h-h-h-h loudly. If your passenger is also a pilot, it is important to establish who is flying the plane and who is not. Sometimes rated pilots will move in on a flying pilot’s turf and this can cause confusion and lead to big problems. Make sure the passengers who are pilots recognize they are to behave as passengers.

The final “P” stands for programming. Flying has been inundated with lots of automation and electronic gadgetry. While this gee-whiz technology can reduce the pilot’s workload it can also lure the pilot into pilot error and potentially catastrophic scenarios. An obvious bad one is ignoring control of the aircraft while making programming inputs. It is essential that pilots become functionally familiar with their navigation systems, tablets, flight management systems et cetera so that they’re not “trying to figure it out” during high workload times. Routes should be preprogrammed prior to take-off and then only minor adjustments will need to be made to accommodate any ATC changes. Double-check your work, too. You may plug-in a navigation fix incorrectly by “fat- fingering” the dinky little buttons or touch screen. Once you’re done go back over it to make sure you’re not headed for Norfolk, Virginia (ORF) instead of Chicago O’Hare (ORD).

Unforeseen things still happen while flying, and no matter how much planning and prep you’ve done, doggone it…the demons sometimes still can reach out and grab your plane. When those demons have got you in their clutches keep these rules in mind:

1. FLY THE AIRPLANE. Period. Don’t allow ANYTHING to take you away from doing that.

2. FLY THE AIRPLANE!

3. ISOLATE the problem. Consider probable causes and possible causes.

4. Use the appropriate CHECKLIST for your problem. It will likely lead you to resolution of the problem and probably suggest the best or the only alternative.

5. Calculate how much TIME and FUEL you have to remain aloft and work on the problem.

6. Evaluate all ALTERNATIVES and assign pros and cons to each.

7. You always have 3 choices: LAND NOW, LAND SOON or CONTINUE.

8. Utilize all RESOURCES both on the ground and in the air including ATC and other aircraft to relay your radio message if you’re too low in altitude. Don’t be afraid to confess your predicament.

9.Remember the most important FAR of all is 14 CFR § 91.3(b) “In an in-flight emergency
requiring immediate action, the pilot in command may deviate from any rule of this part to the extent required to meet that emergency.”

10. FLY THE AIRPLANE!

Single pilot flying is busy flying but when you do your best to thoroughly prepare for a flight it greatly lessens chaos and the chance for pilot error. The philosophy of CRM is a good one. And although it is a fairly new term in aviation, it is really a very old concept that good pilots have been practicing for many years.

Get Started With Your Flight Training Today

You can get started today by filling out our online application. If you would like more information, you can call us at (844) 435-9338, or click here to start a live chat with us.

Footnotes and Resources:

1 – “Gender Differences in General Aviation Crashes,” Prof. Susan Baker, Johns Hopkins University Bloomberg School of Public Health news release, May 15, 2001

2 – https://www.nbaa.org/events/amc/2010/news/presentations/1018_mon/safety_stand/Halleran-SPRM.pdf

 3 – You think you’d be in any mental state to fly if you just won the $35 million Powerball?

Flight Safety: Breaking the Chain of Events

Shawn Arena

Throughout my years in aviation, I’ve encountered a variety of situations in which by making the right decision, I avoided potential and real danger. And in the name of flight safety, I’d like to share another one of those stores here. This is a story that involves a chain of events that literally caused the hair on my arms tingle with trepidation, for I was witnessing in real life what Human Factors experts have called the “Swiss Cheese Effect.”

Dr. James Reason’s “Swiss Cheese” Model

For those readers who may not be familiar with Dr. James Reason’s “Swiss Cheese Model”, here is a brief primer. Dr. James T. Reason, from the University of Manchester, is considered the preeminent pioneer in the study of risk management and safety culture. In the mid-1990’s Dr. Reason published a document highlighting what he referred to as the “Swiss Cheese Model.” See the following graphic:

Graphic of the Swiss Cheese Model of Causation

As one can see, there are several segments that represent layers or ‘links in a chain” of events that if aligned just right, can cause an incident or accident (i.e. the “Swiss Cheese Effect”). If however, the sequence of events is recognized, it re-aligns or breaks the chain and an accident is avoided. This is the background of this flight experience.

The Chain of Events in Real Life

In early 2002, I was managing a general aviation airport, owned by the City of Phoenix, AZ, named Phoenix-Goodyear Airport (GYR). During that time, local airport managers held a quarterly airport manager’s meeting at a selected Arizona airport to share day-to-day airport administration and issues of the time, so as to learn from each other. On the day of the meeting, I decided to rent a Cessna 172 from Glendale Municipal Airport (GEU), about 15 minutes driving time from my airport in Goodyear. Mark, Glendale’s airport manager at the time, agreed to come along rather than make the 122 mile, 2 hour drive to Show Low Regional Airport (SOW) where the meeting was being held. By flying, we could make the meeting at SOW, in northeast AZ, in less than an hour.

This is when the ‘chain of events’ and potential flight safety risks began. Event #1: The aircraft I had reserved was inadvertently rented out to someone else, so I had to take another that I had not flown before. “No big deal,” I thought to myself, I’d flown several 172’s from this flight school before with no problem. As I was conducting the interior preflight inspection, I noted that the engine would not start after a few efforts. “Oh, well,” I thought. Maybe it was just cold and hadn’t flown in a while.

Event #2: After I finally got the engine running to my satisfaction, I noted that the Number 1 COMM radio reception was very intermittent, but I continued to the run-up area to conduct the pre-takeoff checklist. As I started to listen to the Automatic Terminal Information System (ATIS) broadcast at GEU (i.e. a pre-recorded message telling pilots cloud heights, visibility, active runway and time), I recalled the weather report for SOW (Event #3) was a 30 knot crosswind upon landing, with gusts up to 45 knots. And this was at a 2200 foot runway located in mountainous terrain. Immediately after hearing the local ATIS, the radio knob literally broke off and fell to the floor.

Fortunately for me, it only took these three events to stop the chain. I radioed GEU ground control for taxi back to the ramp. I felt that not only had the “Swiss cheese holes” begin to align, but a slight but very apparent case of “get-there-itis” also began to creep in. Mark was, to say the least, very unhappy that we had to scrub the flight. I apologized but told him: “ I don’t care, I’d rather be in a position on the ground wishing we were airborne, versus being airborne and wishing we were on the ground.”

Yes, at first I was bummed too, BUT a strong dose of reality came across me saying enough is enough. I called Dennis, the Airport Manager at SOW, apologized for not making the meeting and we would catch up at the next meeting.

Flight Safety Lessons Learned

By no means am I postulating that no one would have continued a similar flight, but what I want to convey to my fellow airmen is that I reached my personal limits and was not willing to risk further events. As the saying goes: “Learn to fly another day.” The gravity of the chain of events really sunk in when I called Dennis the next day, and learned the winds actually increased about the time we would have arrived. Thank goodness I had chosen to remain on terra firma. Here is hoping others will pay similar attention to flight safety and avoid the “Swiss Cheese” from aligning for them!

Get Started With Your Flight Training Today

You can get started today by filling out our online application. If you would like more information, you can call us at (844) 435-9338, or click here to start a live chat with us.

Featured Image by Marshall Segal

Call Us